平凡	727年度				産業システム上学プログラム			
科	目区分・分類	一般・講義		対象学	科名・学年 電気電子3年 科目コード 37001332			
	科目名	微分積分 A	Differe	ntial	and Integral IIA			
	担当教員	亀山 統胤						
単位数(時間数) 必修 通年 2単位 (60時			立 (60時	間)	学習・教育目標との対応 (C-1)			
投票の で		微分積分の応用,微分方程式,複素数の各分野の系統的な理解や基礎的概念の理解を通して,知識の習得と技能の習熟を図る.また,数学的論理を通して思考力・表現力・創造力を養い,現象を数学的に考察し処理する能力を伸ばす.						
先修科目 微分積分 ,線形代数					TOTAL MARKATAN AND AND AND AND AND AND AND AND AND A			
後修科目		ベクトル解析,フーリエ解析,複素関数論,確率統計						
備考		1変数関数の微分と積分の計算ができることを前提とする.授業後には必ず復習を行い, 教科書の問いや練習問題等を自分で解いてみることが大切である. (関連科目)微分積分 B						
		授業項目		時間	内容			
1	数列とその極限			2	基本的な数列の極限を求めることができる.			
2	いろいろな数列	刊の極限		2	等比数列の性質やロピタルの定理を用いて,いろいろな数列の収束・発散を調べることができる.			
3	級数			4	簡単な級数の収束・発散を調べ、和を求めることができる.			
1	べき級数の収束	5 半 经		2	る・ 簡単なべき級数の収束半径を求めることができる.			
5		ミキュュ ロ定理とテイラー <i>0</i>	つ定理	4	マクローリンの定理とテイラーの定理を基本的な関数に			
٦	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			7	適用することができる.			
6	演習			2	標準的な問題を解くことができる.			
	· · · · ·	前期中間試験						
7	関数の多項式に			4	基本的な関数について,n次近似式と誤差の限界を求めることができる.			
8	マクローリン展	展開とテイラー展 界	F	2	基本的な関数のマクローリン展開を求めることができる			
9	オイラーの公式	t		2	オイラーの公式を理解し,複素数の計算に応用できる.			
10	複素数と極形式	•			複素数平面と極形式について理解できる.			
11	絶対値と偏角			2	複素数の絶対値と偏角について理解し,n乗根を求めることができる.			
12	演習			2	標準的な問題を解くことができる.			
前期期末試験								
13	微分方程式の意			2	簡単な微分方程式をつくることができる.			
	微分方程式の解	7		2	微分方程式の一般解・特殊解について理解できる.			
15	变数分離形			2	基本的な変数分離形の微分方程式の一般解を求めること ができる.			
16	同次形			2	基本的な同次形の微分方程式の一般解を求めることができる.			
17	1階線形微分方	程式		2	非斉次1階線形微分方程式の一般解を求めることができる。			
18	2階微分方程式	とその解		2	2階微分方程式とその一般解・特殊解について理解でき			
19	演習			2	る. 標準的な問題を解くことができる.			
-	後期中間試験							
20	2階線形微分方			2	2階線形微分方程式の一般解の形について理解できる.			
	定数係数斉次級			4	定数係数斉次線形微分方程式の一般解を求めることがで きる.			
22	定数係数非斉次	尺線形微分方程式		4	定数係数非斉次線形微分方程式の一般解を求めることができる.			
23	いろいろな線形	/ / / / / / / / / / / / / / / / / / /		2	連立微分方程式や定数係数でない線形微分方程式のうち			
24	線形でない2階	微分方程式		2	,基本的なものについて一般解を求めることができる. 線形でない2階微分方程式のうち,典型的なものについ			
25	演習			2	て一般解を求めることができる. 標準的な問題を解くことができる.			
20	/	学年末試験			IM I FURNISHE CHIT (CCD CCD .			
	J T / トルルペス							

学習・教育目標を 達成するために身 に付けるべき内容	目標とする.授業内容を 60%以上理解し計算できることで,学習・教育目標の(C-1)の
成績評価	定期試験等(80%),平常点(20%)の合計 100 点満点で(C-1)を評価し,合計の 6割以上を獲得した者をこの科目の合格者とする.ただし,平常点は授業中に行う課題演習等で評価する.
教材	教科書:高遠節夫 他 「新微分積分 」 大日本図書 問題集:高遠節夫 他 「新微分積分 問題集」 大日本図書
オフィスアワー	毎週水曜日14:30~15:00 数学科の各教員が対応します。