T-13.	727年度				1						
科	目区分・分類	専門・講	義		対象学	科名・	学年	電気電子3年	科目コード	39200121	
科目名 電磁気学 Electroma			gneti	gnetics							
	担当教員 大澤 幸造										
単位数(時間数) 必修 通年 2単位 (60時			間)	学習	・教育	育目標との対応	(D-1)				
授業の 電磁気学は,電気回路と 目的と概要 業では,電気電子工学を									本授		
先修科目 電気基礎											
後修科目 電磁気学 , 電磁気・回路消			[習								
	備考										
_		授業項目			時間	# 4 44	4.		内容		
2	ベクトルの演算 右ネジの法則 , ビオ・サバールの法則			2	基本的なベクトル演算が行える. 右ネジの法則およびビオ・サバールの法則から無限長線 状電流の磁界を計算できる.						
3	ソレノイドの磁界,アンペア周回積分			2	ソレノイド内の磁界の強さを計算できる.また,アンペア周回積分の意味を理解できる。						
4	アンペア周回積分を用いた計算				2	アンペア周回積分を用いて,環状ソレノイドなどの磁界を求めることができる.					
5	磁界のスカラ・ポテンシャル,ベクトル・ポテンシャル			2	磁界の	スカ		ルおよびベクト	・ル・ポテンシャ		
6	フレミングの左手則,電磁力			2		ング	の左手則を用い	て直線状導体	こ働く電磁力が		
7	磁気双極子モーメント,ローレンツ力,導体間の電磁力			2	ループ電流の磁気双極子モーメントを理解できる.また,電子に作用する電磁力,平行導体間の電磁力を計算できる.						
8	ホール効果,電磁力による仕事			2	ホール効果の原理を説明できる.また,電磁力によって 直線状導体が成した仕事を計算できる.						
	L	前期中	間試験		1	1					
9	ファラデーの法則,交流の発生			2	ファラデーの電磁誘導の法則を説明できる.また,磁界中で回転するコイルの起電力を求めることができる.						
		レミングの右手則,エネルギー変換,渦電流				フレミングの右手則から起電力を計算できる.また,電気エネルギーと機械エネルギーの関係が説明できる.					
		インダクタンス,相互インダクタンス,結合係数				自己インダクタンス,相互インダクタンスおよびその関係について説明できる.					
	インダクタンス				2			クタンスを計算			
13	自己インダクタン	スと相互イン	/ダクタンスの!	算出方法	4			,直線状往復導 ダクタンスを記	導体などの自己∙ 汁算できる.	インダクタンス	
14	電磁エネルギー				2			ギーを計算で			
15	前期期末試験 ベクトルの演算 ,電荷と静電誘導 ,点電荷と電界			4	ベクトル演算が適用できる.また,点電荷の空間把握ができ,点電荷間に働くクーロン力を求めることができる.						
16	電気力線と密度	₹,電界の	強さ		2	電気力	線の	密度と電界の引	強さの関係を理解	解できる.	
	電束と電束密度			明	4	電束お を説明			うことができる	. ガウスの定理	
18	電位と電位差	電位差			2	電位,電位差の概念を理解でき,2点間の電位差を求めることができる。					
19	電位の傾き,等電位面			2	等電位面の性質を理解し,等電位面と電気力線の関係を 図示できる.						
20 立体角 後期中間試験				2	立体角	を理	解するため,」	立体角の証明問題	題を解く.		
21	帯電体による電		気双極子		2	電気双	極子	について理解で	でき,説明でき	る.	
22	球				2	一様に	帯電	した球の電界の	の強さを計算で	きる	
	•										

23	無限長円筒,無限平面		2	一様に帯電した無限長円筒および無限平面の電界の強さ					
				を計算できる.					
24	24 電荷分布と電界		2	導体の電荷分布を理解し,導体表面に働く力を計算でき					
				る.					
25	25 各種静電容量の計算		2	導体球 , 同心円筒間 , 平行平面間 , 平行導体間の静電容					
				量を計算できる.					
26	電位係数と容量係数		2	電位係数と容量係数の概念を理解でき,説明できる.					
27	電気影像法		2	電気影像法について理解し、点電荷と平面導体間の電界					
				の強さと力を計算できる.					
	学年末試験								
字省・教育目標を 諸島を計質できること			現にお	の強さ,インダクタンスの求め方を理解し,代表的な はる電荷に働く力,電界の強さ,静電容量の求め方を っこと.これらの内容を満足することで,学習・教育目					
		4回の定期試験(70%),課題 割以上を獲得した者を合格と		·ト(30%)の合計100満点で(D-1)を評価し,合計の6					
教材 教科書:山口昌一郎「基礎電荷			磁気学	」電気学会					
オ	フィスアワー	水曜日14:30~16:00,電気電	子工学	科棟3F大澤教員室まで .					