彩	目区分・分類	専門・講義	対象学	科名・学年 電子制御3年 科	目コード 39300331
科目名 電磁気学 Electroma		netics			
担当教員 浅沼 和志(浅沼 和志(前期)	·····································		
単位	位数(時間数)	必修 通年 2単位 (60時	間)	学習・教育目標との対応(『)-1)
授業の 目的と概要		電気電子系分野の基礎をなす電磁気学について学ぶ.電磁気を支配する法則や概念などの 基礎的事項の理解を通じて,電気回路,電子回路,電子工学,通信工学等の理解や設計に 応用できる基礎能力を養う.			
先修科目 電気回路		電気回路			
後修科目		電子工学,電子回路			
備考 物理,微積分,ベクトルなどの知識が必要となる.					
		授業項目	時間	内容	
1	電荷とクーロン	/の法則	6	電荷と電荷間にはたらく静電気ロンの法則を用いて、具体的な	
2	ガウスの法則	ウスの法則		電界,電気力線,ガウスの法則を理解し,具体的な問題	
3	電界と電位		6	に応用し,電界を計算できる. 電界と電位の関係を理解し,簡単な系の電界や電位,電荷が電界から受ける力を計算できる.	
4	コンデンサ		4	何が竜がから受ける力を計算できる。 静電容量や静電エネルギ について説明でき , これらを	
5	静電誘導		A	具体的に計算ができる. 静電界中に置かれた導体と誘電体(絶縁体)の静電誘導	
o	肝电防等		4	について理解し,分極や誘電率について説明できる.	
6	寅習 1		4	項目1-5について具体的な計算に適用できる。	
7	前期期末試験 電流がつくる磁界		6	アンペールの法則,ビオ・サバールの法則を理解し,電	
8	電流が磁界から受ける力		6	流のつくる磁界を計算できる. フレミングの左手の法則,ローレンツ力について理解し	
				, 磁界中の電流や電子にはたらく力を計算できる.	
9	電磁誘導		6	ファラデーの法則,レンツの法則を理解し,誘導起電力 を計算できる.	
10	自己誘導・相互	自己誘導・相互誘導		インダクタンスについて理解し,求めることができる. コイル電流の過渡変化(準定常電流)を説明できる.	
11	変位電流と電磁波		4	コイル電流の過渡変化(学足吊電流)を説明できる。 変位電流を理解し、電磁波の発生ならびにその伝搬機構	
				について説明できる.またこれ	ιらとマクスウェル方程式
12	定型 2		4	との関連について理解できる。 項目7-11について具体的な計算	
12 演習 2			4	カロについて、大学のでは、	千に旭力 (こる。
学習・教育目標を 達成するために身 に付けるべき内容					
成績評価		前期期末試験(20%),学年末試験(20%),レポート課題(40%),授業中に実施する小テスト(20%)の合計100点満点で目標(D-1)の達成度を総合的に評価する.合計で6割以上を達成した者をこの科目の合格者とする.			
教科書:高橋正雄「理工系の電磁気学」共立出版 参考書: R.A.Serway「科学者と技術者のための物理学 電磁気学」学術図書出版 教材				建工 等	
7	ナフィスアワー	放課後 16:00 ~ 17:00 , 電・ にとらわれず必要に応じて来		[学科棟1階生産技術実験準備]	室の小野まで、この時間